スネルの法則(屈折の法則)

スネルの法則

屈折率の異なる二つの領域 \( \mathrm{I}, \mathrm{II} \) の境界で, 屈折する光の光路に関する法則がスネルの法則(屈折の法則)である. スネルの法則はホイヘンスの原理によって説明可能である.

ホイヘンスの原理によるスネルの法則の説明図
ホイヘンスの原理によるスネルの法則の説明図

図より, \[ \frac{ \sin{\theta_{\mathrm{I}}} }{ \sin{\theta_{\mathrm{II}}} } = \frac{ \frac{BB'}{AB'} }{ \frac{AA'}{AB'} } = \frac{ BB' }{ AA' } = \frac{ v_{\mathrm{I}}t }{ v_{\mathrm{II}}t } = \frac{ v_{\mathrm{I}} }{ v_{\mathrm{II}} } = \frac{ f \lambda_{\mathrm{I}} }{ f \lambda_{\mathrm{II}} }\] ここで, 屈折率が異なる物質に入射した波でも振動数は変化しないことを利用した.

スネルの法則をまとめると, \[ \frac{ \sin{\theta_{\mathrm{I}}} }{ \sin{\theta_{\mathrm{II}}} } = \frac{ v_{\mathrm{I}} }{ v_{\mathrm{II}} } = \frac{ \lambda_{\mathrm{I}} }{ \lambda_{\mathrm{II}} } = \frac{ n_{\mathrm{II}} }{ n_{\mathrm{I}} } \label{snellI} \] または, \[ \left\{ \begin{aligned} n_{\mathrm{I}} \sin{\theta_{\mathrm{I}} } &= n_{\mathrm{II}} \sin{\theta_{\mathrm{II}} } \\ n_{\mathrm{I}} \lambda_{\mathrm{I}} &= n_{\mathrm{II}} \lambda_{\mathrm{II}} \\ n_{\mathrm{I}} v_{\mathrm{I}} &= n_{\mathrm{II}} v_{\mathrm{II}} \end{aligned} \right. \label{snellII} \] である.

正弦波 フェルマーの原理

スポンサーリンク

この記事をシェアする

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です